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SUMMARY

*- .- briefly discuss-the similarities and differences between two iterative estima-

tors that are suitable for the network m, estimation problem, namely a modification of

the Iterative Least-Squares method (HS) due to Schmee and Hahn (1979) and the

Maximum-Likelihood Estimator (MLE). Both methods reduce to the usual Least

Squares Multiple Factors (LSMF) method when the censored data are deleted from the
. e.

network observational data. For the censored case, the standard deviation (at) of the

obscuring noise must be solved through iteration along with the event magnitudes and

the station corrections. An extra constraint on a is necessary to determine which

optimal estimation scheme is of interest. The final value of fy for each iterative

'b scheme can be used as a good approximation to the unbiased estimate of the standard

deviation of the perturbing noise. By scaling this 4F value by the square root of the

number of observations associated with each unknown parameter, the uncertainty in

each estimated parameter can be approximated efficiently. These error estimates seem

to differ from the unbiased standard errors only by a common multiplying constant

across all stations and all event mk's.

The bootstrap method is reviewed and adapted to the case of rr -1 -;,ariate estima-

tion with doubly censored data. The Monte Carlo resampling is carried out among the

collection of residuals instead of the observational data. The pool of residuals is

enlarged to include all censored residuals for random drawing. The bootstrap result

confirms the aforementioned scaling relationship between the individual error estimates

and the global o of the perturbing noise. As a result, the bootstrap/jackknife technique
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may not justify the considerable computational effort required for this specific applica-

tion.

Ir
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1. INTRODUCTION

The problem of estimating .tody-wave magnitudes (Mb) using amplitudes read at a

number of recording stations is frequently complicated by the fact that the data may be

heavily censored. This arises either because of clipping, where all amplitudes can be deter-

mined only to exceed a given lower bound (i.e. the right-censored case in statistical terms), or

because the signals are weaker than the ambient noise level and hence are not detected (i.e.

the left-censored case). If one simply averages the amplitudes for those stations which detect

an event, without regard for those that clipped or did not record, serious biases may result in

the magnitude estimated.

The problem of jointly estimating event magnitude and station corrections (Douglas,

1966; von Seggern, 1973) using data that are incomplete because of missing station readings

and censoring (above by clipping and below by noise) has been considered in Blandford and

Shumway (1982). In the case where the errors in observing the amplitudes are uncorrelated

from event to event and from station to station, the Expectation Maximization (EM) algorithm

(Dempster et al., 1977) can be used to solve the multiparametric version of the maximum

likelihood estimation problems originally considered by Ringdal (1976) for the left-censored

case and by von Seggern and Rivers (1978) for the doubly censored case.

We will examine the similarities and differences between two iterative estimators for

censored model, namely the Iterative Least-Squares method (ILS) due to Schmee and Hahn

(1979) and the Maximum-Likelihood Estimator (MLE). These two methods reduce to the

same Least Squares Multiple Factors (LSMF) (Douglas, 1966) method when the censored data

are deleted from the network ooservational data. Each method is completely characterized by
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a constraint on the choice of the standard deviation (5) of the obscuring noise, and F is

solved through iteration along with the event magnitudes and the station corrections. The

final value of a for each iterative scheme can be used as a good approximation to the

unbiased estimate of the standard deviation of the perturbing noise. By scaling this aY value by

the square root of the number of observations associated with each unknown parameter, the

uncertainty in each estimated parameter can be approximated efficiently. These error esti-

mates seem to differ from the unbiased standard errors only by a common multiplying con-

stant across all stations and all event mb's.

The bootstrap method (Efron, 1979, 1981) has been used as a means of the uncertainty

assessment in the mb estimation problem for several years (Blandford et al., 1983; McLaugh-

lin, 1986a, 1986b, 1988). We will suggest a slightly different way of using the bootstrap

technique. Specifically, we propose to enlarge the pool of residuals to include all doubly cen-

sored residuals for random drawing, and to change the definition of the "censored residual".

The bootstrap method can be used to confirm the aforementioned scaling relationship between

the individual error estimates and the global a of the perturbing noise.
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2. MODEL ASSUMPTIONS AND GENERAL IDEAS

Consider ne explosions recorded at some or all of n, stations. The linear model for the

j'th station observing the i'th event is that the magnitude Yij can be represented as

Yij = i + Sj + eij (1)

where Ei depends on the seismic size of the explosion, Si is the station correction term, and

the raw magnitude Yij, which contains the error term eij, is computed by ( logl 0(A/T) + B )

(Veith and Clawson, 1972), as the usual practice. Since adding a common constant to each Ei

and subtracting the same constant from each Si would yield another set of solutions to (1),

usually the rather arbitrary assumption that E Sj = 0 is imposed to resolve the indeterminacy.

The obscuring errors eij are assumed to be uncorrelated and to belong to the same probability

distribution, namely a common Gaussian distribution with zero mean and variance G2 . The

standard regression model in (1) may be written in the form

Y = H 0 + e, (2)

where H is the design (or observation) matrix of dimension npath x nq, 0 and Y are column

vectors of size nq = n - 1 and npath respectively, where npath is the total number of phy-

sically available observations (or equations).

For the non-censored case, Douglas' (1966) LSMF method is identical to the standard

least-squares (LS) and

(H'H) - 1H'Y . (3)

This least-squares estimator has many optimality properties. For instance, it is unbiased, and it

gives minimum variance within the class of linear unbiased estimators. It also minimizes the

residual sum of squares:

Teledyne (eotech 3 June 1988
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RSS = (Y-H0)'(Y-H0). (4)

Furthermore, 0 LS is also the Maximum-Likelihood Estimate (MLE) under the Gaussian

assumption. It is very easy to compute the uncertainty by using Var(OLS] = 62(H'H)- ', which

is simply scaling the variance of the random perturbations by the number of observations

associated with each unknown. This y of the random perturbations turns out to be the most

important factor in determining the precision of the individual mb estimate, even in the doubly

censored case.

We will assume that there are four categories of observational data that may be available

in any given situation. For the nth observation in category m, the observed ynn will be in one

of the following four categories (Blandford and Shumway, 1982):

m 0

denotes an observation yon which is available.

m=1

denotes an observation yin, known only to be below some threshold level tin; Yin < tin-

m=2

denotes an observation y2n, known only to be above some threshold level t2n; y2n > tza.

m=3

denotes the case where Y3n is not observed as in the case of a station not recording a par-

ticular event.

Throughout this study, we will assume that there are n0 , nl, n2, and n3 paths associated

to these four categories, respectively. Obviously, no+nl+n 2+n3 = n. x ns:, and no+nl+n 2

npath. We will use Yo, ti, and t2 to denote the collection of type 0, I, and 2 observations

Teledyne Geotech 4 June 1988
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respectively. It is not difficult to derive an estimator for the doubly censored linear model

such that the estimator would coincide with LSMF whenever it is applied to a non-censored

data set. For instance, simply taking the LSMF and ignoring all censored observations is an

obvious yet uninteresting case. Any nontrivial generalization of the LSMF to the censored

model should at least possess some kind of optimality property, or it should seem natural. It

seems very difficult to develop a procedure which can retain all the optimality properties that

the LSMF has in the non-censored case, e.g., unbiasedness, least-squares, and maximum-

likelihood. Henceforth, we will develop a collection of estimators based on some general idea,

and then impose an extra constraint to make the solution optimal in some sense.

For notational convenience we will define

-- HO. (5)

Let Y be the standard deviation of the independent Gaussian errors eij in equation (1),

and consider

S -u2

0(u) - -2exp(---) , (6a)
2

(D(u) -- L(x)dx, (6b)

and

S (u) (6c)(D(u)

Suppose that Y is known, and suppose that the current (i.e., the r th step) estimate for 0 is

Or. Then the conditional expectations of the censored observations based on current estimates

of the system parameters are the following:

Er(Y0j I Yoj = t0j) = t0j (7a)

Teledyne Geotech 5 June 1988
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Er(Ylj I Ylj - tij) = j - aS(zj1 ) , (7b)

Er(Y 2j I Y t2j) = 2.tj + aS(-zj) , (7c)

where Er denotes expectation with respect to the parameter guesses at the current stage, and

tij- ir, i= 1,2; j = 1,2...n i . (8)

In both the ILS and MLE procedures, the conditional expectations in formula (7) (i.e.,

the "best fill-in" option as discussed in Gleit (1985)) are then used to obtain the updated

coefficients 0 by standard regression, i.e.,

Or+i = (H'H)-IH'Yr (9)

where Yr denotes the data vector Y with conditicnal expectations replacing the censored

values (Schmee and Hahn, 1979; Aitkin, 1981; Blandford and Shumway, 1982).

Procedures (7) through (9) are repeated until the parameter estimate, 0 r, converges. In

the non-censored case, neither the iteration nor ti~e a priori information about a is required,

since a is uniquely determined as the RMS residual after a single regression on the original

type 0 data. However, this is no longer the case for censored models. For an arbitrary y, a 0

can always be found with the iteration procedure discussed above, whenever the non-detection

and the clips are present. Therefore it is necessary to impose some extra constraint to make

the solution unique and optimal. Two typical constraints on Y will be discussed.

0 in Equation (9) can be solved through direct inversion, or equivalently, it can be com-

puted by stacking the equations due to the specific form of the observation model (1) (Bland-

ford and Shumway, 1982). In fact, stacking the equations (i.e., network averaging) would be

much more efficient and more accurate than the cumbersome matrix algebra. To adopt this

approach, the purely predicted values for type 3 paths defined as

Teledyne Geotech 6 June 1988
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E(Y3j I y3j is missing )= (10)

must also be included in the stacking.

Note that in each iteration loop, the regression procedure (9) is carried out with the

"'refined" data set Yr (Equation (7)), in which we have explicitly assigned the equal weight to

each transformed path ((7b) and (7c)) as well as each regular signal (7a). In fact, the observa-

tion matrix H in equation (2) treats censored paths just the same as regular paths. Therefore

it seems reasonable to define the precision in each parameter estimate by dividing Y by the

square root of the total number of paths associated with that specific parameter. This is

exactly the same logic used in the case of the non-censored model. We will apply this idea to

both the ILS and the MLE, and check the validity of this approach by the bootstrap method in

a later section.
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3. ITERATIVE LEAST SQUARE METHOD

In the non-censored case, LSMF minimizes the residual sum of squares (equation 4).

For the censored case, we define the "squared penalty loss" as

A(a) = (Yk-H0)(Yk-H6), (11)

where 6 = 0(a) is the parameter estimate determined by a fixed Y using the iterative pro-

cedures described in the last section, and Y the final data vector with censored values replaced

by the conditional expectations (cf., Equation 7). In other words, A(a) is the sum of all

squared discrepancies between the regressed parameters (i.e., the mean) and the "best guess"

of the observational data based on the censoring information. Obviously A(G) can be con-

sidered as a measure of the goodness of fit. In the non-censored case (4), A = RSS, and there

exists a unique d such that A = no dr2. Furthermore, substituting any other value of a into (7)

through (9) will not affect the result. In fact, this unique d is simply the root-mean-squared

(RMS) residuals. Along the same line of thought, there exists a unique d such that

A(( ) = npa 2 , (12)

where npath - (n0+nl+n 2). Thus this d can be visualized as the generalized "root-mean-

squared-residuals" for the censored model in a very loose sense. The corresponding estimator

is tentatively called the Iterative Least Square (ILS). Since this a is not known, it must be

solved together with the 0. This ILS scheme is very similar to that in Schmee and Hahn

(1979) and Aitkin (1981) except that they use npath-nq in (12). The reason for this

modification will become clear in a later section.

The ILS condition A = (n0+nl+n 2) a 2 implies the following simpler form, which is

appropriate for solving a iteratively:

Teledyne Geotech 8 June 1988
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no
o(yOj - g0j)

2

0= (13)

0  n1 + n2 - S(zIj) 2 
- "S(z2j)

2

j=1 j=1

It is solved iteratively as follows: starting with the initial guess of 0 and a2 (e.g., by treating

the censored data as uncensored, or using non-censored data alone), the conditional expecta-

tions are calculated (Equation (7)) and a new 0 is obtained. Then V2 is updated with (13) and

the procedure is repeated until a 2 and 0 converge. Note that S(zlj) and S(-z 2j) on the right-

hand side of (13) are computed with the current estimate of Y, i.e. Crr , while a on the left-

hand side is the updated one, i.e. Yr+, .

A correction for the degrees of freedom (D.O.F.) of the whole system is suggested for

application to the limit of Yr+1 in (13):

2 npath lim(ur+) . (14)

npath - nq

For the non-censored models, this D.O.F. adjustment will convert the conventional RMS

residual to the the unbiased ( estimate of the obscuring noise. For censored data, the adjust-

ment in (14) is conjectured to be able to reduce substantially the bias in a, although a (closed

form) full correction for the bias is not available yet (Schmee and Hahn, 1979; Aitkin, 1981).

We will show that dIL s differs from the bootstrap Y only by a multiplicative constant.

Teledyne Geotech 9 June 1988
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4. MAXIMUM-LIKELIHOOD METHOD

Suppose we seek the Maximum-Likelihood Estimates (MLE) instead of the least-squares

solution, i.e., we look for the parameter estimates which maximize the following log-

likelihood function of the "incomplete data sampler" YO, t1, t2 :

In L(y0, t 1, t2 1 0, (Y2 )  _L n 2U2 _ __ n yj_ tj2(5in- -- Yln1'(2 ' ' )- 2- y 1(Y°J - -o) (15)
2 2 (2 j=

n, n2
+ In cI(zlj) + E In cI(-zzj)

j~I j~l

where zj, (D, 0, and S are defined earlier.

A number of procedures may be used to maximize the log-likelihood function, such as

Newton-Raphson, or scoring. If the dimension of 0 is large, then these methods become com-

putationally intractable.

Differentiating (15) with respect to a and setting the derivative equal to zero, one sees

that o2 must satisfy the following condition (Aitkin, 1981):

no

1Voj - 0j)
2

G 2 n j=l (16)

no + XS(uj)zl j - IS(-z2)z2j
j=1 j=I

Similar to (13) for the ILS method, (16) is solved iteratively with the Expectation Max-

imization (EM) algorithm (Dempster et al., 1977): the "incomplete data" (i.e., the censored

observations) in the sufficient statistics are replaced at each iteration by their conditional

expectations (7), given the observed data and the current parameter estimates, 0 r and (r, (the

"E" step). New parameter estimates 0 r+1 are then obtained from the replaced sufficient statis-

tics as if they had come from a complete sample, and then substituted into (16) to solve for
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the updated (Tr, (the "M" step). The EM algorithm has been applied to many different

research fields recently (e.g. Shumway, 1982; Shumway and Azari, 1988). Blandford and

Shumway (1982) used an equivalent yet more complicated formulation of (16).

Once the iteration loop converges, i.e. Yr+1 a , the same D.O.F.-adjustment (14) is

suggested as in the ILS case for consistency.

Note that in the non-censoring case, n, = n2 = 0, both equation (16) and equation (13)

will become the conventional RMS residual:

no
,(Yoj _ N-tj) 2

G02 = i=1  (17)

no

There is an easy way to distinguish the ILS and the MLE. Recall that "squared penalty

loss" A was defined as (Y-HO)'(Y-H0), where 'Y = E(Yly 0,tl,t 2). The ILS chooses A/nlpah as

0 2, while the MLE chooses E[(Y-H0)'(Y-HL0)l y0,tl,t2]/npath. Since the computation of con-

ditional expectation is not commutative, the ILS and the MLE will end up with different esti-

mates of y, and hence all the event magnitudes and station effects as well as their associated

uncertainty estimates will be different in general.

EXAMPLE I

To illustrate how the EM and the ILS methods can be used directly to estimate the

uncertainty associated with their corresponding optimum parameter estimates, we have

selected the same four events as in Blandford and Shumway (1982). The epicenters of these

events are listed in Table 1. Table 2 gives the raw magnitude data recorded at 71 WWSSN

stations that we used. It also lists the estimated station terms, Sj, using the LSMF, the ILS,
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and the MLE methods. The errors in 0LS and 0 MLE are computed with the same way as for

LSMF, namely Var[l0 = 62(HH)-1.

Table 1. Epicenters & Dates

Date- Name Latitude Longitude

631026 Shoal 39.200n 118.380w
660602 Piledriver 37.230n 116.060w
631020 Rubis 24.000n 5.000e

650227 Saphir 24.060n 5.030e
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Table 2. Raw mb1 at 71 WWSSN Sites and The Station Terms
____Shoal Piledriver Rubis Saphir LSMF ILS MLE

AAE ---- _---- 5.29 5.81 -0.08±-0.18 -0.08±0.19 -0.08±+0.20

AAM 5.09 5.65 5.29 --- -0.02+-0.15 0.09±0.16 0.10±0.17
AKU --- 5.27 ---- 6.08 0.04±0.18 0.06+-0.19 0.06±0.20
ALQ ----_--- 5.85 5.96 0.28±0.18 0.27±0.19 0.27±0.20
ANT <4.71 5.86 5.44 5.76 0.09±0.15 0.03±0.14 0.03±0.14
AQU <4.97 --- >5.10 5.89 0.16±-0.25 0.04±0.16 0.04+-0.17
ARE 5.05 5.92 5.45 5.74 0.08±0.13 0.16±-0.14 0.16±0.14
ATh 5.12 5.61 6.08 ---- 0.24±0.15 0.35±0.16 0.36±-0.17
ATU <6.06 ---- 5.51 >5.58 -0.01±-0.25 0.06±-0.16 0.06±-0.17
BHP <4.64 <5.23 6.01 6.01 0.39±0.18 0.04±0.14 0.04±-0.14
BLA 5.08 5.50 ---- 5.92 0.06±-0.15 0.16±-0.16 0.17-+0.17
BOG <4.99 5.27 <5.14 ---- --0.26±+0.25 -0.36±+0.16 -0.37±+0.17
BOZ ---- ---- 5.81 6.06 0.31±0.18 0.30±+0.19 0.30±0.20

BUL ----- 5.45 5.58 -0.11±-0.18 -0.12±0.19 -0.12±-0.20

CAR 5.55 5.71 5.08 5.32 -0.04±+0.13 0.04±10.14 0.04±-0.14
CHG ---- ---- ---- 5.67 -0.06±-0.25 -0.10±0.27 -0.10±0.29

*CMC ---- 5.00 --- 5.54 -0.36±0.18 -0.34±-0.19 -0.34±-0.20
COL ---- 5.73 ---- 4.65 -0.44±-0.18 -0.42±+0.19 -0.42±0.20

COP <5.13 <5.61 5.44 <5.56 -0.08±-0.25 -0.23±-0.14 -0.24±-0.14
DAL ---- ---- 5.55 5.79 0.05±0-18 0.04±0.19 0.04±+0.20

DUG --- ---- 5.47 5.73 -0.03±-0.18 -0.03±-0.19 -0.03±-0.20

ESK --- <5.28 ---- 5.87 0.14±0.25 -0.11±+0.19 -0.12±0.20

FLO 4.98 ---- ---- 5.99 0.09±0.18 0.21±0.19 0.2 1±0.20

GDH <4.99 <5.29 6.01 6.14 0.45±0.18 0.16±-0.14 0.16±-0.14
CEO <5.44 5.40 6.08 5.69 0.13±0.15 0.15-+0.14 0.15±+0.14
GIE ---- 5.57 ---- ---- 0.04±0.25 0.11±0.27 0.11±-0.29

GOL ---- ---- 5.05 5.14 -0.53±0.18 -0.54±0.19 -0.54±0.20

JER ---- ---- ---- 6.25 0.52±0.25 0.48±0.27 0.48±0.29

KEV <5.03 5.34 5.68 >6.26 -0.01±+0.18 0.17±0.14 0.17±0.14
KIP 5.47 6.10 ---- ---- 0.49±0.18 0.66±0.19 0.67±0.20

KOD ---- ---- ---- 5.39 -0.34±+0.25 -0.38±-0.27 -0.38±-0.29

KON <4.92 5.78 5.38 5.98 0.12±0.15 0.09±0.14 0.09±0. 14
KTG 4.95 5.90 <4.96 5.22 -0.08±0.15 -0.14±-0.14 -0.14±-0.14
LON ---- ---- <5.10 5.61 -0.12±0.25 -0.35±+0.19 -0.36±-0.20

LOR ---- 5.78 ---- ---- 02±.5 .3027 02.9
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____ ________ Table 2. (Continued)______

Shoal Piledriver Rubis Saphir LSM-F ILS MLE

LPB 5.06 ---- 5.22 5.47 -0.19±-0.15 -0.10±+0.16 -0.10±+0.17
LPS -- 5.29 5.22 --- -0.27-+0.18 -0.23-+0.19 -0.23-+0.20
LUB -- ---- ---- 6.44 0.71+-0.25 0.67±+0.27 0.67±+0.29

MAL <4.91 5.35 ---- --- -0.18+-0.25 -0.15±-0.19 -0.15±-0.20
MDS 5.07 --- 5.37 5.55 -0.11+-0.15 -0.02±-0.16 -0.02±0.17
MNN 4.42 --- 5.40 5.73 -0.25±+0.15 -0.17±-0.16 -0.17±-0.17
NAT ---- ---- 5.43 >5.86 -0.09±+0.25 0.09±+0.19 0.10±+0.20

NAT ---- 5.84 ---- ---- 0.3 1±0.25 0.38±-0.27 0.38±-0.29

NDI ---- ---- 5.29 5.64 -0.16-+0.18 -0.17±+0.19 -0.17±+0.20

NNA <4.45 5.64 5.42 5.86 0.05±-0.15 -0.06±+0.14 -0.06±+0.14
NOR ---- 5.05 ---- 5.23 -0.49±+0.18 -0.47±-0.19 -0.47±-0.20

N-UR <4.72 5.36 5.12 5.42 -0.29±+0.15 -0.29±-0.14 -0.30±+0.14
OGD 5.08 5.10 ---- 5.66 -0.16±0.15 -0.06±-0.16 -0.06±-0.17
OXF ---- 5.98 ---- ---- 0.45±-0.25 0.52±+0.27 0.52±0.29

PEL ---- 5.47 ---- 6.07 0.14±+0.18 0.16±+0.19 0.16±+0.20

POO ---- ---- ---- 5.64 -0.09±+0.25 -0.13±-0.27 -0.13±-0.29

PRE --- ---- 5.30 5.44 -0.26±0.18 -0.26±-0.19 -0.26±-0.20

PTO --- 5.31 5.32 5.69 -0.15±+0.15 -0.14±-0.16 -0.14±+0.17
QUE --- ---- 4.70 4.93 -0.81±-0.18 -0.82±+0.19 -0.82±-0.20

RCD ---- ---- 6.72 6.45 0.96±-0.18 0.95±+0. 19 0.95±-0.20

Scp 4.81 4.97 5.52 5.76 -0.19±+0.13 -0.11±+0.14 -0.11±+0.14
SDB ---- ---- ---- 5.78 0.05±-0.25 0.01±+0.27 0.01±-0.29

SEO 4.83 5.52 ---- ---- -0.12±-0.18 0.05±+0.19 0.06±-0.20

SHA <5.15 5.64 5.86 6.16 0.29±-0.15 0.27±+0.14 0.27±-0.14
SHI ---- ---- 5.81 >5.36 0.29±-0.25 0.31±+0.19 0.31±0.20

SHK ---- 5.49 ---- ---- -0.04±-0.25 0.03±+0.27 0.03±-0.29

SHL ---- ---- 5.33 5.45 -0.24±-0.18 -0.24±+0.19 -0.24±-0.20

SJG ---- 5.67 ---- 5.83 0.12±+0.18 0.14±+0.19 0.14±-0.20

STU <4.86 5.46 5.90 6.19 0.26±-0.15 0.19±-0.14 0.19±-0.14

TOL ---- 5.55 ---- ---- 0.02±+0.25 0.09±+0.27 0.09±+0.29

TRI <4.91 5.37 5.49 5.69 -0.08±-0.15 -0.08±-0.14 -0.08±-0.14
TRN ,<4.72 5.48 5.23 5.69 -0.13±+0.15 -0.15±-0.14 -0.15±-0.14
UME 1<4.50 5.76 5.27 5.60 -0.05±+0.15 -0.13±+0.14 -0.13±-0.14
VAL,- <5.09 <5.09 5.55 5.61 -0.05±+0.18 -020±0f. 14 -0.20±+0.14
WfES <4.52- -- 4.95 5.45- 5.63 -0.25±0.15 -0.28±-0.14 -0.29±+0.14
WIN -- --- 5.01 5.50 -0.37±0.18_ -0.38±+0.19 -0.38±i).20)
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In the first experiment, each of the LSMF, MLE, and ILS was sepa'ritely used with non-

censored data (i.e., signals) alone. They all give the same results as shown in the LSMF row

in Table 3. The 147 good paths yield an RMS residual of 0.179, and d = 0.254 regardless of

the method used. Note that the third digit after the decimal point is actually computer-

dependent.

Table 3. Comparison of LSMF, MLE, ILS
Name Shoal Piledriver Rubis Saphir

signals 14 38 42 53

noise 20 5 3 1

clips 0 0 1 4
LSMF 5.054+0.068 5.528-0.041 5.516+0.039 5.735±0.035

MLE 4.777+0.049 5.461+0.044 5.502±0.042 5.767+0.038

ILS 4.784+0.046 5.461+0.041 5.502+0.040 5.767+0.035

When the noise and clips are added for separate MLE and ILS runs, the bias reduction

then becomes quite obvious for Shoal. Since there were only a few censored paths associated

with the remaining three events, their rhbtsw estimates are already quite acceptable. The mb'S

of three out of four events decrease once the censored data (mainly non-detections) are

included. The Mb of Saphire slightly increases, because there are more clips than non-

detections.

If we consider lim(Gr+i) the "generalized RMS residual", and assume that the D.O.F.-

adjustment is sufficient to remove the bias in the variance estimate, then the ILS appears to be

able to generate a smaller standard deviation than does the MLE. It L henceforth not surpris-

ing that the error estimates in rhh, 1 s are systematically smaller than those in rnb,,, (Tables 2

and 3). However, since neither dlls nor dMLE is proven unbiased, the error estimates in
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Tables 2 and 3 are actually multiplied by an unknown constant across the four events as well

as all 71 stations. This constant factor for the ILS method will be different from that for the

MLE, as illustrated in the bootsirap experiments in a later section. In this example, the possi-

bly biased estimates of the standard deviations of the perturbing noise derived by different

methods are dJLS = 0.270 (Equations (13) and (14)) and dMLE = 0.286 (Equations (16) and

(14)), respectively. The log-likelihood function (15) evaluated at 0 MLE is -5.622 which is

larger than that of -6.103 evaluated at OLs, as expected.
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5. BOOTSTRAP METHOD

Efron's bootstrap method (1979, 1981; also Efron and Tibshirani, 1985) has been pro-

posed by Blandford et al. (1983) to estimate the uncertainty in mb estimates and station

terms. Some recent work on the magnitude estimation problem has extensively utilized this

technique (McLaughlin et al., 1986a, 1986b; McLaughlin, 1988).

Suppose the optimal estimates of the components of 0 (i.e., the collection of all E, and

Sj) are available by using some estimation algorithm. To apply the bootstrap method, one has

to construct three pools of residuals. For a type 0 (uncensored) path, we define its "regular

residual" as

eij = Yij - Ei - Si, (19)

where (i, j) runs through all paths of category 0.

For each noisy path (i.e. Ei + Sj + eij < Yij ), the corresponding "censored residual" is

defined as 8ij < ti Yij - - Sj. These are almost the same as the regular residuals except

that the equal sign was used in equation (19). Censored residuals from clipped paths are gen-

erated in a similar way, and they are stored in the same bowl together with the "regular resi-

duals" and the "noisy residuals". For instance, after the Veith-Clawson distance normaliza-

tion, the WWSSN station AQU (42.354°N, 13.403'E, in Aquila, central Italy) reported the

raw magnitudes of Shoal, Rubis, and Saphire as <4.97, >5.10, and 5.89, respectively (Table

2). By subtracting rhbE (Table 3) and SMLE[AQU] = 0.04 (Table 2) from these readings, we

get three MLE residuals: <0.15, >-0.44, and 0.08. Note that AQU was able to report a larger

reading such as Saphire with m, 5.89, and it was clipped at a lower clipping threshold (5.10)

for Rubis, even though Rubis and Saphire were both detonated at the same French test site in
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Algeria. The same observation can be made with WWSSN station LON (46.750'N,

121.810'W, in Longmire, Washington, U.S.) (Table 2). As more events are used in the regres-

sion, this phenomenon becomes more severe in that fewer stations can maintain well-defined

detection and clipping thresholds in the "magnitude" domain. The easiest way to account for

such unpredictable features across a large seismic network is to model them with the inter-

changeable random residuals as presented here.

Now for each path (i, j), a pseudo-magnitude is constructed by perturbing its predicted

value, E, + Sj, with a randomly drawn residual -i"

Yi* P j + 9j +  i'j" (20)

where (i', j') denotes the identifier of the randomly drawn event-station pair. If this residual

was censored, then the equality sign in equation (20) should be replaced by < or >, according

to the flag of eij,. Thus we are randomly allocating the residuals (with replacement) to

obscure the predicted magnitude value. A good path (i.e. of type 0) might become clipped or

noisy during certain resampling procedures, but missing paths (i.e. type 3 "observations")

remain invariant.

The pseudo-magnitude samples are used to reconstruct new estimates Ei* and Sj using a

selected estimator. This Monte Carlo procedure is repeated many times, and the sample stan-

dard deviations of the E,*'s and Sj*'s are proposed by Efron (1981) as good approximations to

the standard errors of the original estimators E, and Sj. The D.O.F.-adjustment (14) is applied

to the bootstrap standard errors for consistency.

Using the combination of the MLE and the bootstrap (with 200, 400, and 600 bootstrap

resamplings), the standard error estimates of the four events in Example 1 are listed in Table

Teledyne Geotech 18 June 1988



Iterative Network mb Estimators With Censored Data TGAL-88-06

4 below:

Table 4. MLE + Bootstrap

Event std. er. 200 std. er. 400 std. er. 600 ibbI .- ib, 6MLE+B

Shoal 0.059 0.059 0.058 0.005 0.336
Piledriver 0.049 0.052 0.053 0.009 0.345

Rubis 0.043 0.045 0.045 0.007 0.308
Saphir 0.042 0.046 0.056 0.007 0.332

In the table, std. er. i, i=200,400,600 represents the uncertainty estimates made with 200,

400, and 600 bootstrap resamplings, respectively. Comparing Tables 3 and 4, it is obvious that

the errors in each event as estimated by the MLE with the bootstrap method are very close to

what we obtained with one single call of the MLE alone. The discrepancy between the aver-

aged ihb...B after 600 resamplings and the rht,. is negligible (column 5 of Table 4). If we

extract the bootstrap standard error in each station and event (the "std. er. 6w" in Table 4)

and multiply it by the square-root of the total number of observations associated (signals,

noise, and clips), the result (column 6 of Table 4) appears to be a pretty good approximation

of 6MLE" The root-mean-squared value of such 6MLE+B computed from 71 stations and 4

events is 0.296, whereas the dMLE was 0.286.

We also performed the same experiment based on a combination of ILS and the

bootstrap, as shown in Table 5 below:
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_Table 5. ILS + Bootstrap

Event std. er. 200 std. er. 400 std. er. 600o mnbs,- mhba OnS+B

Shoal 0.059 0.059 0.057 0.005 0.332
Piledriver 0.049 0.052 0.052 0.008 0.342

Rubis 0.043 0.044 0.044 0.007 0.298
Saphir 0.041 0.045 0.043 0.006 0.328

In this case, the root-mean-squared drts+B (averaged over 71 stations and 4 events) is

0.294, whereas the 61s was 0.278.

Efron (1981) and McLaughlin (1988) perform the resampling among the observed data

themselves, because there was only one unknown parameter and one distribution. In the situa-

tion of multivariate estimation, a centering process (to remove the mean) is necessary, and the

resampling is carried out on the residuals (Blandford et al., 1983).

Note that in Blandford et al. (1983), the resampling of the residuals is limited to the

paths of type 0 only, and all clipped or noisy observations are held fixed at their threshold

levels during all bootstrap iterations. The same scheme is also applied by McLaughlin (1986a,

1986b). This is based on the assumption that the same stations might tend to be noisy or

clipped from event to event (Blandford et al., 1983), which could be true if all events are

from the same test site. For events from several test sites, we have noticed that keeping

clipped and noisy paths unchanged will cause a larger discrepancy between the original

optimal estimators (Eti, Sj) and the averaged bootstrap estimators, and hence it will yield

questionable uncertainty estimates. This observation led us to an alternative approach to treat

all residuals equally, whether they are censored or not, in the resampling.
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EXAMPLE 2

During the past several years, Geotech's WWSSN database has been gradually expanded

to 110 events (totaling 328 usable "a", "b", and "max" event phases) (McLaughlin, 1986a;

Chan et al., 1988). We have separately applied the ILS, the MLE, the ILS with the bootstrap,

and the MLE with the bootstrap on the complete data set.

The 328 phases were treated as uncorrelated events in the regressions. The 7547 good

paths (i.e., signals only) yield an RMS residual of 0.258 and LSMF of 0.266. When the 5012

noisy and 950 clipped paths are added to the input data set, dit s is 0.263, and dMLE is 0.329,

roughly in accord with other work (e.g., Bache, 1982; Veith and Clawson, 1972). The log-

likelihood values computed at 0ILS and 6MLE are -4760 and -4325, respectively.

Figure 1 plots the log-likelihood and the squared penalty loss as a function of aY in the

range from 0.10 to 1.00, for the censored data in this example. As already mentioned earlier,

each a determines a unique solution of 0 through the iterations ((7)-(9)). A question of top

importance is how to constrain the aY for optimality. From the log-likelihood function

evaluated at every possible a (filled circles in Figure 1), it is clear that the log-likelihood

function attains its maximum at RMS a = 0.324, or dMLE = 0.329 after the D.O.F.-

adjustment. On the other hand, the squared penalty loss function A(a) (shown as "+"sign)

has no apparent critical point in the range of interest. The ILS method picks the aY with A =

(n0+nl+n 2) a 2, which is valid only at RMS aY = 0.258, or BtL s = 0.263 after the D.O.F. adjust-

ment. Since the ILS method assumes that each censored path contributes an equal amount (or

weight) of information as does any non-censored path, conceptually this is already the

extremal usage of the censored data, and hence no smaller Y is acceptable from a realistic
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Figure 1. The log-likelihood and the squared penalty loss as a function of a in the range
from 0.10 to 1.00. The log-likelihood function attains its maximum at RMS a = 0.324, or

6MLE = 0.329 after the D.O.F. adjustment. The squared penalty loss function A(a) increases
almost linearly as a increases, and it has no apparent critical point in the range considered.
Conceptually, censored paths cannot provide more information than the non-censored paths,
and therefore the A = (n0+nl+n 2) Y2 determines the smallest acceptable a, which yields RMS
a = 0.258, or dn s = 0.263 after the D.O.F.-adjustment. Thus ILS is indeed optimal in terms
of the squared penalty loss.
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point of view. Thus A(tdIL) is the smallest achievable penalty loss if we limit the a to be no

less than A/(n 0+nl+n 2 ). In this sense, ILS is also optimal.

Figure 2a plots the fab. and filb. versus ihb,, for all 110 events. In using WWSSN

data, there is only a narrow magnitude range from about 5.7 to 6.4 in which the censoring

effects of clipping or non-detection do not lead to serious bias (Chan et al., 1988), in accord

with many network studies (Ringdal, 1986; Clark, 1983; Lilwall, 1986; Lilwall et al., 1988;

Christoffersson and Ringdal, 1981, Chinnery, 1978; Everndon and Kohler, 1976). The

discrepancies between rMb, and are always slightly smaller than those between rht

and rhbs. Basically this is because du s is smaller than dMLE, and hence the ILS tends to

underestimate somewhat the bias compensation in the computation of conditional expectations,

as compared to the MLE (Figure 2b). The same observation can be made with the receiver

effects of 127 stations (Figures 3a and 3b), Figure 3c plots the histogram of receiver effects

estimated with the LSMF, the MLE, and the ILS method using bin width 0.1 unit.

The uncertainty estimates of 127 stations and 328 phases computed with the four

aforementioned techniques are plotted in figures 4a and 4b. The results of 600 iterations of

the ILS (or the MLE) and the bootstrap show a very clear linear relationship between

log(/number of observations) and log(uncertainty estimate) (Figures 5a and 5b). This means

that the uncertainty in each estimated parameter is completely determined by the total number

of observations associated with that parameter, provided that the global a is known. If dMS or

dMLE is used, instead of the true aF, then a constant multiplicative adjustment in the uncer-

tainty estimates is necessary (Figures 5a and 5b). Conversely, the global Gunbiased can be

stably estimated from any individual uncertainty estimate (by multiplying by the square-root
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Figure 2a. The tfnb,. and thb, versus rhb,,, for 110 explosions (328 phases). There is only
a narrow magnitude range from about 5.7 to 6.5 in which the censoring effects of clipping or
non-detection do not lead to serious bias. Compared to MLE, ILS tends to underestimate
somewhat the censoring effects.
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Figure 2b. The nb. versus ihb, for 110 explosions (328 phases). Compared to MLE, ILS
tends to underestimate somewhat the censoring effects.
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Receiver Effects of 127 Stations
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Receiver Effects by LSMF (no-censoring)

Figure 3a. The receiver effects of 127 WWSSN stations indicate that ILS tends to underesti-
mate the censoring effects due to clippings or non-detections, same as in Figures 2a and 2b.
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Receiver Effects of 127 Stations
1.0

0.8 MLE 'vs. ILS

0.4
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-0.8 -0.4 0.0 0.4 0.8

Receiver Effects by ILS (censoring)

Figure 3b. Comparison of the receiver effects estimated by the MLE and the ILS.
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D'stribution of Receiver Terms
40"

IHistogram I3in Width 0. 1
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Receiver Terms by LSMF, MLE, & ILS

Figure 3c. Histogram of the receiver effects with bin width 0.1 unit. Circles, "+" signs, and
triangles represents the spread of the 127 receiver terms estimated with the LSMF, the MLE,
and the ILS methods respectively.
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0.25 ILS-Bootstrap vs. LS+ vi/of Observations

S0.20

0.5

13)
.0.0

:0.05-

U eE i d by j0.

Figue 4a Theuncertainty estimated by the ILS versus that by the ILS and bootstrap. The
absiss ErorLSis predicted in an analytical manner by dividing the d[L by the square root

of nmbe ofassociated observations. The ILS plus bootstrap method computes the ordinate
withstaistcs rom600Mont Calo imuatins.Thehighly linear relationship between

teetwo mtossrnliniaeththeISalone would give a fairly good estimate of
the uncertainty, except for the constant magnifying factor (i.e. , the slope), 1.450.
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ML L+3ootstrap vs. MLE+ '*#of Observations
0.25

o 0.20

Q0

S0.15
-C

0.5

0- 0.05

000 0.05 0. 10 0. 15 0.20 0.25
Uncertaiaty Estimated by ML0

Figure 4b Same as Figure 4a except that the MLE is used instead of the ILS. The magnifying
factor required in this case is 1.218.
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- ILSi-B ootstrap vs. ILS+/1/ of Observations

-0.4

-0.8 +

+ :
+

+~ +

-1.2

-1.6

+ : ILS+V/# of Observations -4 +

-1.8 : [LS+Bootstrapo +

-2.0 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1. 2log, V# of Observations

Figure 5a. The log, O# -ofoberations (including signals, noises, and clips) versus the
lOgl(uncer-tainty estimate). Filled circles represent the results from 600 bootstrap iterations.

The nearly linear relationship (X + Y z1og10(0.381)) indicates that the product of the
4# of observations and the individual error estimate will be a stable estimator of the true Y of
the obscuring perturbations. The lower curve (X + Y og 10(0.263)) gives the predicted

uncertainty with (Y[S-
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MLE+Bootstrap vs. MLE+ '1i/ of Observations
-0.4

-0.6
+

+

-0.8

+ I

1.1
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-1.4-1.6 :

+ "MLE+ 1# of Observatioms
+

- 1.8 - "MLE+Bootstrap

- 2 .0 1 I , I I I

0.0 0.2 0.4 0.6 0.8 1.0 1.2

log,, /# of Observations

Figure 5b. Same as Figure 5a except that the MLE is used instead of the ILS. The linear
relationship is as obvious as in the ILS case. The offset between the theoretical curve and the
bootstrap's result is smaller than that in Fig. 5a. The upper line (X + Y = logl 0(.401)) and
the lower line (X + Y = 1og 10(.329)) will merge together in the non-censoring case.
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of the associated number of observations). In this example, dMLE+B and Ilt.S+B are 0.401 and

0.381, respectively, suggesting a magnifying factor of 1.218 and 1.450 for dMLE and (S,

respectively, under the assumption that bootstrap gives a better estimate of a (Figures 4a and

4b). In the previous example of four events, the correcting factors required were 1.035 (for

the MLE) and 1.058 (for the ILS) (cf. the discussion following Tables 4 and 5).

Figures 6a and 6b show the histogram of the residuals corresponding to the ILS and the

MLE with bin width 0.1 unit. Circles, "+" signs and triangles represent the spread of 7547

"regular residuals", 5012 "noisy residuals", and 950 "clipped residuals", respectively. The

ILS residuals are slightly more concentrated than those of the MLE, since dILS is smaller than

dMLE- The shape of the interpolated histogram of the regular residuals empirically justifies the

idealized assumption imposed on (1) that residuals follow a normal distribution. Note that the

"censored residuals" are not realizations or direct observations of the Gaussian noise. They

represent the "thresholds" in observing the Gaussian noise. The noisy residuals are com-

pactly clustered on the positive side, while the clipped residuals are clustered on the negative

side. Such extra bounding information would of course improve precision in estimating a.

Note that the ILS and the MLE are the standard least squares methods (9) acting on the Y,

i.e. the "refined observations" as defined in (7). If we define the "refined residual" as the

discrepancy between the final conditional expectation of the censored observation (7) and the

regressed mean, then an equivalent histogram of Figure 6a or 6b is obtained which shows

again that the Gaussian assumption is adequate (Figure 6c). This equivalent histogram illus-

trates quantitatively the constructive effect of incorporating the censored information. In sta-

* tistical terms, this means that the Central Limit Theorem is also valid in the case of a doubly

censored model as considered in this study.
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Distribution of ILS Residuals
1200

Histogran Bin Width =0. 1

1000 - 0 7547 Regular Residuals

+ 5012 Noisy Residuals

) 800

A 950 Clipped Residuals

~ 600-

c,)

~ 400-

200-

-3 -2 -1 0 1 2 3

ILS Residual

Figure 6a. The histogram of the ILS residuals with bin width 0.1 unit. Circles, "+" signs,
and triangles represents the spread of 7547 "regular residuals", 5012 "noisy residuals", and
950 "clipped residuals", respectively. The ILS residuals are slightly more concentrated than
that of MLE, because dns is smaller than 6MLE The shape of the interpolated histogram
empirically justifies the idealized assumption that residuals follow a normal distribution.
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10 Distribution of MLE Residuals
1200

Histogram Bin Width =0. 1
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MLE Residual

Figure 6b. The histogram of the MLE residuals (See Figure 6a for caption).
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Distribution of 13509 Refined Residuals
1600

0 MLE Refined Residuals
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Figure 6c. The "refined" histogram showing the effect of incorporating the censored infor-
mation. Here we replaced each censored residual by its "refined" form, which is defined as
the discrepancy between the final conditional expectation of the censored observation and the
regressed mean. The interpolated histograms illustrate again that the Gaussian assumption is
adequate.
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6. DISCUSSION AND CONCLUSIONS

A

In this study, we have briefly reviewed several methods used in network magnitude esti-

mation, and we have illustrated that the uncertainty in the parameter estimates can be easily

estimated by scaling the standard deviation of the perturbing noises. The Iterative Least-

Squares method is very similar to the EM algorithm for the Maximum-Likelihood Estimator

in that the same routine can be used except a minor modification to the calculation of a (cf.,

(13) and (16)) (Aitkin, 1981). Even though neither of these two estimators is truly unbiased

for aY in statistical sense, the MLE has attracted more attention in the seismological commun-

ity, at least as reflected by the literature to date.

The original RS scheme (Schmee and Hahn, 1979; Aitkin, 1981) applies the D.O.F.-

adjustment (14) on ar within each iteration loop, i.e. they look for the aY satisfying A =

(npath-nq)G 2, while the present scheme suggests doing the D.O.F.-adjustment in an off-line

sense for consistency with the MLE. Schmee and Hahn's original scheme yields a result of

0.264 for dES, 909.8 for A, and -4677 for the log-likelihood function in Example 2, just

slightly different from ours. For regression problems with small sample size such as that in

Schmee and Hahn (1979) and Example 1 considered here, the discrepancy between 0n~s and

0 MLE is insignificant. However, it is not true for large sample cases such as Example 2 of this

study.

A few comments on the bootstrap method are worth making: the bootstrap method is

computationally inefficient since it usually requires hundreds of MLE or ILS calls. The more

* data (and hence more residuals) that are used, the more Monte Carlo computations are

, required. The illustrative example given in Tables 4 and 5 is nearly the extreme case, since
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the total number of unknowns is not too large. If there are thousands of residuals as in the

second example, then the bootstrap method would consume copious computational time.

Secondly, we have shown that each of the ILS and the EM algorithms will provide its own

error estimates in a "quick and easy" manner. If the possibly biased estimate of a is an

acceptable approximation, then a single call of the ILS or the MLE will save much computa-

tional time. Thirdly, the tub and station estimates obtained from the bootstrap method would

not be exactly identical to the LSMF (or the MLE, the ILS) even in the non-censoring case

(cf., Tables 4 and 5). At best, it regenerates mb estimates asymptotic to the adopted estimator,

while the "exact" result (Table 3) must have existed in order to start the bootstrap loop. Ear-

lier work on the network (or single event) mb estimation (e.g. McLaughlin et al., 1986a,

1986b; McLaughlin, 1988) uses the bootstrap only for error estimation, while the mb'S and the

station terms were actually obtained from a separate call of the EM method. Efron and

Tibshirani (1985) have shown that, for the simplest non-censored case, the bootstrap method

is asymptotically correct yet redundant in assessing the uncertainty in the sample mean. The

same conclusion seems to be valid even in the censored case, as illustrated in this study.
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